
MULTI-GRAINED DEEP FEATURE LEARNING FOR PEDESTRIAN DETECTION

Chunze Lin1,2,3, Jiwen Lu1,2,3,∗ , Jie Zhou1,2,3

1Department of Automation, Tsinghua University, Beijing, China
2State Key Lab of Intelligent Technologies and Systems, China

3Beijing National Research Center for Information Science and Technology, China
lcz16@mails.tsinghua.edu.cn; lujiwen@tsinghua.edu.cn; jzhou@tsinghua.edu.cn

ABSTRACT

In this paper, we address the challenging problem of detecting
pedestrians who are heavily occluded or far from camera. Un-
like most existing pedestrian detection methods which only
use coarse-resolution feature maps with fixed receptive field,
our approach exploits multi-grained deep features to make
the detector more robust to visible parts of occluded pedes-
trians and small-size targets. Specifically, we jointly train a
scale-aware network and a human parsing network in a semi-
supervised manner with only bounding box annotation. We
carefully design the scale-aware network to predict pedestri-
ans of particular scales using most appropriate feature maps,
by matching their receptive field with the target sizes. The hu-
man parsing network generates a fine-grained attentional map
which helps guide the detector to focus on the visible parts of
occluded pedestrians and small-size instances. Both network-
s are computed in parallel and form an unified single stage
pedestrian detector, which assures a great trade-off between
accuracy and speed. Experiments on two challenging bench-
marks, Caltech and KITTI, demonstrate the effectiveness of
our proposed approach, which in addition, executes 2× faster
than competitive methods.

Index Terms— Pedestrian Detection, Human Parsing,
Attention, Deep Learning

1. INTRODUCTION

Pedestrian detection is one of the most important topics in
computer vision and has attracted great attention over past
few years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. It is a key technol-
ogy in many practical applications such as automotive safety,
intelligent video surveillance and human behavior analysis.
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Fig. 1. Overview of the proposed framework. Given an in-
put image, the human parsing network generates fine-grained
features which are applied on the detection network as a
segmentation-aware attentional map to help focus on visible
parts of occluded targets and small-size pedestrians. The de-
tection network is designed to be scale-aware, where multiple
feature maps with different receptive fields are employed to
detect pedestrian of specific scale.

Despite the recent progress, it is still a challenging problem
to detect occluded pedestrians due to the noisy representation
and small-size targets because of the low resolution.

Existing pedestrian detection methods can mainly be
classified into two categories: hand-crafted features based
[1, 2, 3] and deep learning features based [4, 5, 11]. For
the first category, prior knowledge such as edges and human
shape are considered to generate features and decision trees
are usually learned by applying boosting to these features to
form a pedestrian detector. For the second category, the fea-
tures are learned via a series of convolutional and pooling lay-
ers according to the training data. The convolutional neural
network (CNN) generates high-level semantic features which
significantly improve the pedestrian detection performance.

While many CNN-based methods have been presented in
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recent years, there are still two shortcomings: 1) most of them
usually use feature maps with a single receptive field to deal
multi-scale pedestrians. The mismatching between the sizes
of targets and receptive fields limits the performance. The
small-size instances especially suffer from this inconsisten-
cy, which are often ignored when the receptive field is too
large; 2) most of them are full-body detectors which are not
efficient when dealing with occlusion. Even if some methods
learn a set of human part detectors to handle occlusion issue,
often only a single feature map with fixed receptive field is
employed for the detection.

In this paper, we propose a multi-grained deep features
learning (MDFL) based detection system to simultaneous-
ly handle the occlusion and small-size problems in pedestri-
an detection task. Fig.1 illustrates an overview of the pro-
posed framework. Unlike most existing deep learning based
methods which only consider a single feature map for detec-
tion, we exploit multiple feature maps with different recep-
tive fields and incorporate pixel-wise information to make the
detector more robust to occluded and small-size pedestrians.
Specifically, we jointly train a scale-aware network and a hu-
man parsing network. The scale-aware network is carefully
designed to form a feature pyramid and detects pedestrian of
specific size with most appropriate feature maps. Concretely,
shallower feature maps with small receptive field are reserved
in detecting small-size targets while deeper layers are used
for large instances. The human parsing network is trained in
a weakly supervised way, requiring only bounding box anno-
tation. It generates a fine-grained human parsing mask where
regions containing pedestrians are classed as foreground and
the rest as background. This mask is then converted into an
attention map to make the scale-aware network focus on the
presence of pedestrians. Experiments results on challenging
pedestrian detection datasets show the superiority of the pro-
posed method. Moreover, since the both networks are com-
puted in parallel, it can execute at least 2× faster than existing
pedestrian detection approaches.

2. RELATED WORK

With the prevalence of deep convolutional neural network,
most recent methods are CNN-based. In RPN+BF [4], given
pedestrian candidates generated by a Region Proposal Net-
work (RPN) [12], higher resolution features were extracted
and fed into a boosted forest to handle small-size issue. In-
stead of boosted forest, SDS-RCNN [11] used the VGG16 net
for classification and exploited an additional semantic seg-
mentation loss to implicitly supervise the detector. More
similar to our work, MS-CNN [5] integrated a multi-scale
network into Faster-RCNN [12] to address the scale prob-
lem. While F-DNN [13] used SSD [14] for region propos-
als and a series of deep classifiers in parallel to post verify
each candidate. Besides, some methods [15, 9, 16, 10] learned
occlusion-specific detectors, where each one was responsive
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Fig. 2. Architecture of the scale-aware network. It mainly
consists of a truncated VGG16 net and extra convolutional
layers. The detection layers are presented in green, which
are used for multi-scale pedestrian detection. Each detection
layer is followed by a detection module for final prediction.

to detect a human part to handle occlusion issue. These de-
tectors would give a high confidence score based on the parts
which are still visible when the full-body detector is confused
by the presence of background. Different from the above
methods, most of which adopted two-stage pipeline [12], we
propose a single stage framework such as in [14] and instead
of part-level detection we exploit pixel-wise classification to
deal with occlusion and small-size issues.

3. APPROACH

Our framework is composed of two key parts: a scale-aware
network which detects pedestrian using multi-grained fea-
tures and a human parsing network which generates a fine-
grained attentional map to help the detector focus on regions
that contain pedestrians. These two networks are computed
in parallel and form a single stage detection framework [14],
which offers a great trade-off between accuracy and speed.
An overview of the proposed architecture is depicted in Fig.1.

3.1. Scale-Aware Network

The scale-aware network is designed to detect the targets of
specific size using feature maps with appropriate resolution
and receptive field. Specifically, high-resolution feature maps
are used for smaller targets detection while feature maps with
larger receptive field are extracted for large-size pedestrians
detection.

Architecture of the network: The scale-aware network,
as shown in Fig.2, is composed of the following structures:

• Trunk Network: The scale-aware network is based on
a truncated VGG16 network where the fully connect-
ed layers are converted into convolutional layers. Extra
convolutional layers are added to the end of the base
network. These layers decrease in size and increase
in receptive field progressively in order to cover multi-
scale pedestrians.
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Fig. 3. Architecture of the detection module. The operator
D(M) converts the segmentation mask into an attention map
which activates most relevant parts of the detection features
with element-wise product operation. The concatenation of
feature maps with different receptive fields allows to incorpo-
rate context information. An 1 × 1 filter then selects the best
features before the prediction.

Table 1. The height of reference box in pixels associated to
each prediction layer. The context module provides two dif-
ferent TRFs which mimics the context information incorpo-
ration.

Detection Layer Box Height TRF
conv4 3 30, 60 108, 124
conv5 3 90, 120 228, 260
conv fc7 150, 180 292, 324
conv6 2 240, 270 356, 420
conv7 2 320, 350 484, 612

• Detection Layers: We select conv4 3, conv5 3, con-
v fc7, conv6 2 and conv7 2 as detection layers accord-
ing to their increasingly receptive fields.

• Context Module: In two-stage detector, it is common to
incorporate context information by enlarging the region
proposal. We simulate this effect in a simple convolu-
tional manner. Concretely, a feature map with larger
receptive field is fused with an initial feature map to
mimic the context incorporation. Fig.3 illustrates the
details of the context module, where an 1 × 1 and an
3× 3 filters are computed in parallel.

• Prediction Layer: Each context module layer is fol-
lowed by two 3×3 convolutional layers to produce clas-
sification scores and bounding box offsets respectively.

Design of Reference Boxes: A series of reference boxes
are placed at each prediction layer and the bounding box re-
gression is based on the offsets with respect to these reference
boxes. Since the reference boxes have an important effect on
the regression performance, they are carefully designed based
on receptive field of the prediction layers. According to [17],
in the theoretical receptive field (TRF) of a convolutional lay-
er, center pixels have much more impact comparing to the

Fig. 4. Illustration of the segmentation results and the atten-
tion map effects. First row: images with the ground truth
bounding boxes drawn in green and the artificial foreground
areas presented in red which are used for training segmenta-
tion network. Second row and third row: Conv4 3 feature
map visualization of the left and right images respectively.
Representation of initial feature maps (left), the segmentation
mask (middle), and the features with attention map (right).
The resulting features highlight pedestrians while ignoring
most background regions.

rest, and as a result, the effective area is in general of Gaussian
form. Based on this observation, the height of our reference
boxes is designed significantly smaller than the TRF in order
to match the effective area (see Table 1). Once the height of
the box is determined, the width is computed according to the
aspect ratios of pedestrians: {0.25, 0.41, 0.52}. As the result,
six reference boxes of different scales are considered at each
location.

3.2. Human Parsing Network

In parallel with the detector, a human parsing network gener-
ates a semantic segmentation mask which classes the regions
that contain pedestrians as foreground and the rest as back-
ground. This mask is then converted into a segmentation-
aware attentional map to guide the detector.

Architecture of the Network: The human parsing net-
work is based on the VGG16 network truncated at conv5 3.
We change the layer pool4 from 2×2-s2 to 3×3-s1 and adop-
t the atrous algorithm [18] to compute more dense feature
maps. Each convolutional stage (conv2 2, conv3 3 and con-
v5 3) is up-sampled to generate feature maps in the size of the
input image. The concatenation of these hierarchical maps
forms discriminative features which are then followed by an



1×1 convolutional layer and a sigmoid layer to output pedes-
trian segmentation. Note that the stem parts (conv1-conv2)
are computationally expensive, we share these layers with the
scale-aware network. The architecture is depicted in the top
part of Fig.1.

Weakly Supervised Training: In general, only bounding
box annotations are provided in pedestrian detection tasks.
Therefore, to train our human parsing network, we follow a
weakly supervised strategy by creating artificial foreground
segmentation using bounding box information. In practice,
we consider the center area of the bounding box (80% of pix-
els within the box) as foreground, as shown the first row in
Fig.4. This process considerably eliminates background in-
side the bounding box while keeping the main parts of pedes-
trian. Some segmentation results are depicted in the middle
column of Fig.4. We can verify that, despite the weak anno-
tation, the small targets are effectively highlighted.

Segmentation-Aware Attentional Map: In order to
make our detector more robust to small-size targets and oc-
cluded pedestrians, we exploit the fine-grained features gen-
erated by the human parsing network to supervise the detec-
tion. Specifically, by applying the segmentation-aware atten-
tional map on the features of detection layer, we substantially
reduce the background interference and enhance the features
representing pedestrians and visible body parts. The occluded
target can be then inferred based on these visible parts. Fig.3
illustrates the architecture of the detection module with the at-
tention map inserted. Formally, given the segmentation mask
M, we convert it into an attention map by down-sampling the
size and increasing the channel number, in order to match
with the features of the detection layer F. The resulting acti-
vated feature maps can be formulated as:

As,c = Ds,c(M)� Fs,c (1)

whereDs,c(M) down-samples M by s times and outputs with
c channels and � is the Hadamard operator. Some results
are depicted in Fig.4, which show that the conv4 3 feature
maps with the attention mechanism become more focused on
pedestrians and the background is significantly smoothed.

3.3. Training Objective

Our framework has two sibling output layers and an interme-
diate segmentation output layer. The first outputs bounding-
box regression offsets, d = (dx, dy, dw, dh). The parameteri-
zation for d is as in [19], in which it specifies a scale-invariant
translation and log-space height/width shift relative to a refer-
ence box. The second branch outputs the detection confidence
score (c), computed by a softmax over two classes (pedestri-
an v.s. background). The intermediate output corresponds to
the segmentation result, in which each pixel is classified as
pedestrian or background. We use a multi-task loss L to train
the scale-aware and human parsing networks:

L = Lbox + λcLconf + λsLseg (2)

The box regression loss Lbox targets at minimizing the S-
mooth L1 lossR(d, ĝ) defined in [19], between the estimated
parameters (d) and the ground truth box regression targets
(ĝ), where ĝ has the same parametrization as d.

Lbox =
1

N

N∑
i∈Pos

∑
k∈{x,y,w,h}

xijR(d
k
i − ĝkj ) (3)

where xij = {1, 0} is an indicator for matching the i-th ref-
erence box to the j-th ground truth box and N is the number
of matched reference boxes. If N = 0, we set the loss of
detection module to 0. In our implementation, we begin by
matching each ground truth box to the reference box with the
best intersection over union (IoU) and we then match refer-
ence boxes to any ground truth with IoU higher than 0.5.

The confidence score loss Lconf is the softmax loss and
the cross-entropy loss Lseg is used for the segmentation. In
our experiments, we regularize our multi-task loss by setting
the weight terms λc = λs = 1.

3.4. Implementation Details

Training: Our scale-aware network and human parsing net-
work were partially initialized with the detection model of
[14] and the DeepLab segmentation model [20], respectively.
All new additional layers were randomly initialized with the
Xavier [21]. In order to facilitate the convergence, we first
trained the two networks separately and then the both net-
works were jointly optimized. Specifically, the scale-aware
network was fine-tuned for 50k iterations where we used
10−4 learning rate for the first 40k iterations then continued
with 10−5 for the rest iterations. The human parsing network
was fine-tuned for 80k iterations with a learning rate of 10−8.
Then the both networks are jointly optimized for 20k itera-
tions. All our implementations were based on Caffe frame-
work [22].

Hard negative mining: Our detector has to evaluate a
considerable number of reference boxes, yet only a few lo-
cations contain pedestrians, which causes a significant class
imbalance during training. For more stable training, instead
of using all negative samples, we sorted them by the highest
loss values and kept the top ones so that the ratio between the
negatives and positives is at most 5:1.

Data augmentation: To make our model more robust to
sizes and illumination variations, we adopted following data
augmentation strategies: color distortion, random crop, ex-
pansion and horizontal flip.

4. EXPERIMENTS

4.1. Datasets and Evaluation Protocols

We conducted experiments on two challenging pedestrian de-
tection datasets, Caltech [23] and KITTI [24] datasets, to eval-
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Fig. 5. Comparison with the state-of-the-art methods on the Caltech dataset.

uate our proposed MDFL method and compared it with state-
of-the-art pedestrian detection approaches. Here we give a
brief description of these datasets.

Caltech [23]: Caltech dataset consists of∼10 hours of ur-
ban driving video with 350K labeled bounding boxes. The
log-average miss rate is used to evaluate the detection per-
formance and is calculated by averaging miss rates at 9 false
positive per-image (FPPI) points sampled within the range of
[10−2, 100]. In our experiments, three subsets were consid-
ered to demonstrate the performance on occlusion and small-
size issues: Heavy Occluded, Medium and Overall. In the
Heavy Occluded subset, pedestrians are 36-80% occluded,
in the Medium subset, pedestrians are of 30-80 pixels height
without occlusion and the Overall subset consists of all pedes-
trians taller than 20 pixels with or no occlusion.

KITTI [24]: KITTI dataset consists of 7481 training im-
ages and 7518 test images, comprising about 80K annota-
tions of cars, pedestrians and cyclists. KITTI evaluates the
PASCAL-style mean Average Precision (mAP) under three
difficulty levels: easy, moderate and hard. Under moderate
setting, which is used to rank the competing methods in the
benchmark, the pedestrians taller than 25 pixels with or no
occlusion are considered.

4.2. Results and Analysis

Caltech: We used the Caltech training set, which contain-
s 42,782 training images, to train our detection system and
evaluated it on the Caltech testing set. We compared our pro-
posed MDFL with the methods that have achieved great per-
formance on Caltech [4, 9, 26, 25, 16, 5, 11, 13, 10]. As
shown in Fig.5, our method achieves an impressive 38.53%
and 31.46% miss-rate on Heavy Occluded and Medium sub-
sets respectively, which outperforms considerably the cur-
rent methods. The comparison with the most recent part-
detector based approach [10] (ROC plot not released) which
has achieved 49.20% miss-rate on the Heavy Occluded sub-

Table 2. Comparison of our method with the state-of-the-art
approaches in terms of trade-off between accuracy and speed.
Caltech-Heavy miss rate, KITTI mAP score and runtime are
tabulated.

Method Caltech KITTI Runtime
RPN+BF [4] 74.36 61.29 0.5s

SA-FastRCNN [25] 64.35 65.01 0.5s
DeepParts [16] 60.42 58.67 1s
MS-CNN [5] 59.94 73.70 0.14s

SDS-RCNN [11] 58.55 63.05 0.21s
F-DNN[13] 55.13 - 0.3s

F-DNN+SS [13] 53.76 - 2.48s
JL-Tops [10] 49.20 - 0.6s

Ours 38.53 66.32 0.07s

set, demonstrates the effectiveness of our MDFL model to
handle occlusion issues. The performance on the Medium
subsets shows the capability of our approach to deal with
small-size pedestrians. We also evaluated our method on the
Overall subset to analyze its performance on more general
setting. A miss rate of 46.85% is observed (Fig.5(c)), which
points out the generalization capability of our MDFL.

KITTI: We used the KITTI training set to train our pedes-
trian detector and evaluated on the test set, considering on-
ly the pedestrian class. Our method achieves 66.32mAP on
the moderate setting for pedestrian class, which outperform-
s most approaches [4, 25, 16, 11]. The comparison results
are shown in the third column of Table 2. Note that in the
KITTI evaluation, cyclists are counted as false positives and
person-sitting are ignored, while on Caltech these two class-
es are labeled as pedestrians. Since semantic segmentation
information are useful for detecting person in unusual poses,
this advantage is less helpful on KITTI.

Runtime Analysis: Efficiency is one of the advantages of
our single stage framework, and here we give a short analy-



Table 3. Performance analysis when key components are suc-
cessively disabled on the Caltech test set.

Component Disabled Medium Heavy Overall
Context module 35.31 44.37 49.99

Segmentation mask 33.27 40.27 47.83
Our-MDFL 31.46 38.53 46.85

sis of runtime. Our method takes 0.07s/image with an input
image of size 640 × 480 on a single Nvidia 1080Ti GPU.
Compared to the most methods, our approach executes 2×
faster (fourth column of Table 2). Specifically, compared to
JL-Tops [10], which was proposed to handle occlusion issue,
our method is 8× faster. The comparison shows the effective-
ness of the proposed MDFL detector.

Ablation Study: In order to analyze the contribution of
key components of our framework on performance, we suc-
cessively removed each component and evaluated on Caltech,
as summarized in Table 3. When the segmentation-aware at-
tentional map was disabled, the performance degraded by 2%
on the Medium and Heavy Occluded subsets. When we fur-
ther removed the context module, the performance for detect-
ing small-size targets and occluded pedestrians dropped by
2% and 4%, respectively. The ablation analysis confirms that
the segmentation and context information effectively make
the detector more robust to small-size and occluded targets.

5. CONCLUSION

In this paper, we have proposed a multi-grained deep feature
learning based method for pedestrian detection. By jointly
training a scale-aware network and a human parsing genera-
tor, our approach exploits pixel-wise segmentation informa-
tion, background context and multi-scale property to handle
simultaneously the occlusion and small-size issues. The w-
hole detection system is a single stage framework, assuring
a great accuracy/speed trade-off. The proposed method has
achieved impressive performance on challenging pedestrian
detection datasets, outperforming most existing approaches
while executing 2× faster. How to efficiently convert our
model into a video based method and incorporate temporal
information to further boost the performance appears to be an
interesting future work.
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